Octopod, a homeotic mutation of the moth Manduca sexta, influences the fate of identifiable pattern elements within the CNS

Author:

Booker R.1,Truman J.W.1

Affiliation:

1. Department of Zoology, University of Washington, Seattle 98195.

Abstract

Octopod (Octo) is a mutation of the moth Manduca sexta, which results in the homeotic transformation of the ventral surface of the first (A1) and less often the second (A2) abdominal segments in the anterior direction. The extent of the transformation ranges from a slight deformation of the ventral cuticle, up to the formation of miniature thoracic legs on A1. The extent of the transformation is always less within A2 as compared to A1. A genetic analysis revealed that Octo is an autosomal mutation which shows incomplete dominance. The effect of this mutation on the central nervous system (CNS) was assessed by examining the distribution and fate of the postembryonic neuroblasts in the segmental ganglia of Octo larvae. In each of the thoracic ganglia of wild-type larvae, there is a set of 45–47 neuroblasts; a reduced but homologous array of 24 and 10 neuroblasts are found in A1 and A2, respectively. Ganglion A1 of Octo larvae had 1 to 6 supernumerary neuroblasts, and 20% of the A2 ganglia showed a single ectopic neuroblast. The supernumerary neuroblasts corresponded to identifiable neuroblasts normally found in more anterior ganglia. The Octo mutation also influenced the mitotic activity of stem cells normally present in A1. In this case, the neuroblasts generated a lineage of cells that were typical of a thoracic location rather than A1. These data demonstrate that homeotic mutations can influence the fate of identifiable pattern elements within the CNS of an insect.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3