Properties of predictive gain modulation in a dragonfly visual neuron

Author:

Fabian Joseph M.12ORCID,Dunbier James R.1ORCID,O'Carroll David C.3,Wiederman Steven D.1ORCID

Affiliation:

1. Adelaide Medical School, The University of Adelaide, Australia

2. Department of Bioengineering, Imperial College London, UK

3. Department of Biology, Lund University, Sweden

Abstract

Dragonflies pursue and capture tiny prey and conspecifics with extremely high success rates. These moving targets represent a small visual signal on the retina and successful chases require accurate detection and amplification by downstream neuronal circuits. This amplification has been observed in a population of neurons called Small Target Motion Detectors (STMDs), through a mechanism we termed predictive gain modulation. As targets drift through the neuron's receptive field, spike frequency builds slowly over time. This increased likelihood of spiking or gain is modulated across the receptive field, enhancing sensitivity just ahead of the target's path, with suppression of activity in the remaining surround. Whilst some properties of this mechanism have been described, it is not yet known which stimulus parameters modulate the amount of response gain. Previous work suggested that the strength of gain enhancement was predominantly determined by the duration of the target's prior path. Here we show that predictive gain modulation is more than a slow build-up of responses over time. Rather, the strength of gain is dependent on the velocity of a prior stimulus combined with the current stimulus attributes (e.g. angular size). We also describe response variability as a major challenge of target detecting neurons and propose that the predictive gain modulation's role is to drive neurons towards response saturation, thus minimising neuronal variability despite noisy visual input signals.

Funder

Australian Research Council

Vetenskapsrådet

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3