Affiliation:
1. Department of Zoology, University of British Columbia, 6270 University Blvd, Vancouver, British Columbia, Canada V6T 1Z4
Abstract
Mitochondrial performance may play a role in setting whole-animal thermal tolerance limits and their plasticity, but the relative roles of adjustments in mitochondrial performance across different highly aerobic tissues remain poorly understood. We compared heart and brain mitochondrial responses to acute thermal challenges and to thermal acclimation using high-resolution respirometry in two locally adapted subspecies of Atlantic killifish (Fundulus heteroclitus). We predicted that 5°C acclimation to would result in compensatory increases in mitochondrial performance, while 33°C acclimation would cause suppression of mitochondrial function to minimize the effects of high temperature on mitochondrial metabolism. In contrast, acclimation to both 33 and 5°C decreased mitochondrial performance compared to fish acclimated to 15°C. These adjustments could represent an energetic cost saving mechanism at temperature extremes. Acclimation responses were similar in both heart and brain; however, this effect was smaller in the heart which might indicate its importance in maintaining whole-animal thermal performance. Alternatively, larger acclimation effects in the brain might indicate greater thermal sensitivity compared to the heart. We detected only modest differences between subspecies that were dependent on the tissue assayed. These data demonstrate extensive plasticity in mitochondrial performance following thermal acclimation in killifish, and indicate that the extent of these responses differs between tissues, highlighting the importance and complexity of mitochondrial regulation in thermal acclimation in eurytherms.
Funder
Natural Sciences and Engineering Research Council of Canada
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
64 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献