Multiple domains control the subcellular localization and activity of ETR-3, a regulator of nuclear and cytoplasmic RNA processing events

Author:

Ladd Andrea N.1,Cooper Thomas A.1

Affiliation:

1. Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA

Abstract

Embryonic lethal abnormal vision (ELAV) type RNA binding protein 3 (ETR-3; also called NAPOR, CUGBP2, or BRUNOL3) has been implicated in the regulation of nuclear and cytoplasmic RNA processing events, including alternative splicing, RNA editing, stability and translation. Here, we report that the ETR-3 protein contains multiple regions that control its subcellular localization and are important for its activity as a splicing regulator. We cloned ETR-3 from chicken heart and fused it to the C terminus of green fluorescent protein (GFPcETR3vL). GFPcETR3vL is found predominantly in the nucleus and is an active regulator of alternative splicing in cotransfection assays with a cardiac troponin T minigene. ETR-3 contains two N-terminal RNA recognition motifs (RRMs), a 210-amino acid divergent domain, and a C-terminal RRM. We demonstrate that the C terminus contains a strong nuclear localization signal overlapping the third RRM, which can confer nuclear localization on a normally cytoplasmic pyruvate kinase chimera. Additional deletions revealed nuclear localization and export activities in the divergent domain of ETR-3, as well as regions within the first two RRMs that are important for cytoplasmic localization. The nuclear export activity of the divergent domain is sensitive to leptomycin B, indicating that export to the cytoplasm is mediated via a CRM1-dependent pathway. The C terminus and a region within the divergent domain were also shown to be important for splicing activity of ETR-3. This is the first characterization of protein domains involved in mediating the subcellular localization and splicing activity of a member of the CELF family of RNA processing regulators.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3