nkx3.2 mutant zebrafish accommodate jaw joint loss through a phenocopy of the head shapes of Paleozoic jawless fish

Author:

Miyashita Tetsuto12ORCID,Baddam Pranidhi3,Smeeton Joanna4,Oel A. Phil25,Natarajan Natasha4,Gordon Brogan2,Palmer A. Richard2ORCID,Crump J. Gage4,Graf Daniel36,Allison W. Ted26ORCID

Affiliation:

1. Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA

2. Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9

3. Department of Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2R3

4. Department of Stem Cell Biology and Regenerative Medicine, W.M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA

5. Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, 69117, Germany

6. Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada T6G 2R7

Abstract

The vertebrate jaw is a versatile feeding apparatus. To function, it requires a joint between the upper and lower jaws, so jaw joint defects are often highly disruptive and difficult to study. To describe the consequences of jaw-joint dysfunction, we engineered two independent null alleles of a single jaw-joint marker gene, nkx3.2, in zebrafish. These mutations caused zebrafish to become functionally jawless via fusion of the upper and lower jaw cartilages (ankylosis). Despite lacking jaw joints, nkx3.2 mutants survived to adulthood and accommodate this defect by: a) having a remodelled skull with a fixed open gape, reduced snout, and enlarged branchial region; and b) performing ram feeding in the absence of jaw-generated suction. The late onset and broad extent of phenotypic changes in the mutants suggest that modifications to the skull are induced by functional agnathia, secondarily to nkx3.2 loss-of-function. Interestingly, nkx3.2 mutants superficially resemble ancient jawless vertebrates (anaspids and furcacaudiid thelodonts) in overall head shapes. Because no homology exists in individual skull elements between these taxa, the adult nkx3.2 phenotype is not a reversal, but convergence due to similar functional requirements of feeding without moveable jaws. This remarkable analogy strongly suggests that jaw movements themselves dramatically influence the development of jawed vertebrate skulls. Thus, these mutants provide a unique model with which to: a) investigate adaptive responses to perturbation in skeletal development; b) re-evaluate evolutionarily inspired interpretations of phenocopies generated by gene knockdowns and knockouts; and c) gain insights into feeding mechanics of the extinct agnathans.

Funder

National Institutes of Health

Natural Sciences and Engineering Research Council of Canada

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3