p31comet-mediated extraction of Mad2 from the MCC promotes efficient mitotic exit

Author:

Westhorpe Frederick G.1,Tighe Anthony1,Lara-Gonzalez Pablo1,Taylor Stephen S.1

Affiliation:

1. Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK

Abstract

Accurate chromosome segregation requires the spindle assembly checkpoint to be active at the onset of mitosis, before being silenced following chromosome alignment. p31comet is a checkpoint antagonist in that its inhibition delays mitotic exit, whereas its overexpression overrides the checkpoint. How exactly p31comet antagonises the checkpoint is unclear. A prevalent model is that p31comet acts as a ‘cap’ by inhibiting recruitment of the open conformation form of Mad2 (O-Mad2) to the kinetochore-bound complex of Mad1–C-Mad2 (closed conformation Mad2), an essential step that is required for checkpoint activation. Here, we show that although p31comet localises to kinetochores in mitosis, modulation of its activity has no effect on recruitment of O-Mad2 to kinetochores. Rather, our observations support a checkpoint-silencing role for p31comet downstream of kinetochores. We show that p31comet binds Mad2 when it is bound to the mitotic checkpoint complex (MCC) components BubR1 and Cdc20. Furthermore, RNAi-mediated inhibition of p31comet results in more Mad2 bound to BubR1–Cdc20, and conversely, overexpression of p31comet results in less Mad2 bound to BubR1–Cdc20. Addition of recombinant p31comet to checkpoint-arrested extracts removes Mad2 from the MCC, whereas a p31comet mutant that cannot bind Mad2 has no effect. Significantly, expression of a Mad2 mutant that cannot bind p31comet prolongs the metaphase to anaphase transition. Taken together, our data support the notion that p31comet negatively regulates the spindle assembly checkpoint by extracting Mad2 from the MCC.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 117 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3