Positive feedback between golgi membranes, microtubules and ER-exit sites directs golgi de novo biogenesis

Author:

Ronchi Paolo,Tischer Christian,Acehan Devrim,Pepperkok Rainer

Abstract

The Golgi complex is the central organelle of the secretory pathway. It undergoes dynamic changes during the cell cycle, but how it acquires and maintains its complex structure is unclear. To address this question we have used laser nanosurgery to deplete cells of the Golgi complex and monitored its biogenesis by quantitative time-lapse microscopy and correlative electron microscopy. After Golgi depletion, ER export is inhibited and the number of ER-exit sites (ERES) is reduced and does not increase for several hours. Occasional fusion of small post-ER carriers to form the first larger structures triggers a rapid and drastic growth of Golgi precursors, due to the capacity of these structures to attract more carriers via microtubule nucleation and to stimulate ERES biogenesis. Increasing the chances of post-ER carrier fusion close to ERES by depolymerizing microtubules results in the acceleration of Golgi and ERES biogenesis. Altogether, our results propose a self-organizing principle of the early secretory pathway that integrates Golgi biogenesis, ERES biogenesis and the organization of the microtubule network by positive feedback loops.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3