Use of conjugates made between a cytolytic T cell clone and target cells to study the redistribution of membrane molecules in cell contact areas

Author:

Andre P.1,Benoliel A.M.1,Capo C.1,Foa C.1,Buferne M.1,Boyer C.1,Schmitt-Verhulst A.M.1,Bongrand P.1

Affiliation:

1. Laboratoire d'Immunologie, Hopital de Sainte-Marguerite, Marseille, France.

Abstract

In many models of cell-cell adhesion, it was reported that some cell membrane molecules might be redistributed into contact areas. However, this phenomenon was not subjected to precise quantification. In the present work, fluorescence microscopy, immunolabelling and digital image processing were combined to analyse quantitatively the spatial organization of specific or nonspecific conjugates made with a cytolytic T (CTL) lymphocyte clone (BM3.3) and target cells (EL4 or RDM4). Binding was achieved under calcium-free conditions to study the earliest steps of cell interaction, preceding CTL activation. Fluorescent antibodies were used to label class I histocompatibility molecules on both killer and target cells, and T cell receptor, CD3, CD8 and LFA-1 (CD18/CD11a) on the killer cells. Membrane bilayers were stained with a fluorescent phospholipid, glycoconjugates were labelled with periodic oxidation and Lucifer Yellow uptake, and polymerized actin was revealed with a fluorescent phallacidin derivative. Also, the fine geometry of killer-target interaction area was studied with electron microscopy and computer-assisted contour analysis. It is concluded that: (1) qualitative examination of fluorescence photomicrographs cannot permit accurate comparison between different fluorescence densities. (2) The cell-cell contact area was about fourfold higher in specific conjugates than in non-specific ones. (3) The surface density of adhesion molecules exhibited similar increases (between 30 and 80%) in the contact areas of both specific and nonspecific conjugates. (4) However, the amount of redistributed surface molecules was higher when cell-cell interaction was enhanced either by specific immunological recognition (in specific conjugates) or periodate oxidation. (5) Since redistribution did not require extracellular calcium and it was detected on nonspecific conjugates, this did not require full lymphocyte activation. Spatial reorganization of cell surface molecules may thus be a general consequence of adhesion, cell surface mobility and intermolecular forces.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3