Effects of wave-driven water flow on the fast-start escape response of juvenile coral reef damselfishes

Author:

Roche Dominique G.1ORCID

Affiliation:

1. Division of Evolution, Ecology and Genetics, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia

Abstract

ABSTRACT Fish often evade predators with a fast-start escape response. Studies typically examine this behaviour in still water despite water motion being an inherent feature of aquatic ecosystems. In shallow habitats, waves create complex flows that likely influence escape performance, particularly in small fishes with low absolute swimming speeds relative to environmental flows. I examined how wave-driven water flow affects the behaviour and kinematics of escape responses in juveniles of three coral reef damselfishes (Pomacentridae) with different body morphologies. Tropical damselfishes have similar fin and body shapes during early development, with the exception of body depth, a trait deemed important for postural control and stability. Wave-driven flow increased response latency in two of the three species tested: fish with a fusiform body responded 2.9 times slower in wave-driven flow than in still water, whereas this difference was less pronounced in fish with an intermediate body depth (1.9 times slower response) and absent in fish with a laterally compressed body. The effect of wave-driven flow on swimming performance (cumulative escape distance and turning rate) was variable and depended on the timing and trajectory of escape responses in relation to the wave phase. Given intense predation pressure on juvenile coral reef fishes during settlement, interspecific differences in how wave-driven flow affects their ability to escape predators could influence the distribution and abundance of species across spatial and temporal scales.

Funder

Australian National University

Centre of Excellence for Coral Reef Studies, Australian Research Council

Natural Sciences and Engineering Research Council of Canada

Ian Potter Foundation

Society for Integrative and Comparative Biology

Ecological Society of Australia

Total Diving Montréal

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3