Affiliation:
1. Chromosome Segregation Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
Abstract
Cohesin is best known as a crucial component of chromosomal stability. Composed of several essential subunits in budding yeast, cohesin forms a ring-like complex that is thought to embrace sister chromatids, thereby physically linking them until their timely segregation during cell division. The ability of cohesin to bind chromosomes depends on the Scc2–Scc4 complex, which is viewed as a loading factor for cohesin onto DNA. Notably, in addition to its canonical function in sister chromatid cohesion, cohesin has also been implicated in gene regulation and development in organisms ranging from yeast to human. Despite its importance, both as a mediator of sister chromatid cohesion and as a modulator of gene expression, the nature of the association of cohesin with chromosomes that enables it to fulfil both of these roles remains incompletely understood. The mechanism by which cohesin is loaded onto chromosomes, and how cohesin and the related condensin and Smc5–Smc6 complexes promote DNA interactions require further elucidation. In this Commentary, we critically review the evidence for cohesin loading and its subsequent apparent sliding along chromosomes, and discuss the implications gained from cohesin localisation studies for its important functions in chromosome biology.
Publisher
The Company of Biologists
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献