Fatigue of insect cuticle

Author:

Dirks Jan-Henning1,Parle Eoin1,Taylor David1

Affiliation:

1. Trinity College Dublin

Abstract

SummaryMany parts of the insect exoskeleton experience repeated cyclic loading. Although the cuticle of insects and other arthropods is the second most common natural composite material in the world, so far nothing is known about its fatigue properties, despite the fact that fatigue undoubtedly limits the durability of body parts in vivo. For the first time, we here present experimental fatigue data of insect cuticle. Using force-controlled cyclic loading, we determined the number of cycles to failure for hind legs (tibiae) and hind wings of the locust Schistocerca gregaria, as a function of the applied cyclic stress. Our results show that, although both made from cuticle, these two body parts behaved very differently. Wing samples failed after 100,000 cycles when we applied 46% of the stress needed for instantaneous failure (the UTS). Legs, in contrast, were able to sustain a stress of 76% of UTS for the same number of cycles to failure. This can be explained by the difference in the composition and structure of the material and related to the well-known behaviour of engineering composites. Final failure of the tibiae occurred via one of two different failure modes - crack propagation in tension or buckling in compression - indicating that the tibia is evolutionary optimized to resist both failure modes equally. These results are further discussed in relation to the evolution and normal use of these two body parts.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference26 articles.

1. A buckling region in locust hindlegs contains resilin and absorbs energy when jumping or kicking goes wrong;Bayley;J. Exp. Biol.,2012

2. The energetics of the jump of the locust Schistocerca gregaria;Bennet-Clark;J. Exp. Biol.,1975

3. Biomimetics: lessons from nature – an overview;Bhushan;Philos. Trans. R. Soc. Lond. A,2009

4. Biomechanics of the stick insect antenna: damping properties and structural correlates of the cuticle;Dirks;J. Mech. Behav. Biomed. Mater.,2011

5. Fracture toughness of locust cuticle;Dirks;J. Exp. Biol.,2012

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3