MIG-10 (lamellipodin) has netrin-independent functions and is a FOS-1A transcriptional target during anchor cell invasion in C. elegans

Author:

Wang Zheng1,Chi Qiuyi1,Sherwood David R.1

Affiliation:

1. Department of Biology, Duke University, Science Drive, Box 90388, Durham, NC 27708, USA.

Abstract

To transmigrate basement membrane, cells must coordinate distinct signaling activities to breach and pass through this dense extracellular matrix barrier. Netrin expression and activity are strongly associated with invasion in developmental and pathological processes, but how netrin signaling is coordinated with other pathways during invasion is poorly understood. Using the model of anchor cell (AC) invasion in C. elegans, we have previously shown that the integrin receptor heterodimer INA-1/PAT-3 promotes netrin receptor UNC-40 (DCC) localization to the invasive cell membrane of the AC. UNC-6 (netrin)/UNC-40 interactions generate an invasive protrusion that crosses the basement membrane. To understand how UNC-40 signals during invasion, we have used genetic, site of action and live-cell imaging studies to examine the roles of known effectors of UNC-40 signaling in axon outgrowth during AC invasion. UNC-34 (Ena/VASP), the Rac GTPases MIG-2 and CED-10 and the actin binding protein UNC-115 (abLIM) are dedicated UNC-40 effectors that are recruited to the invasive membrane by UNC-40 and generate F-actin. MIG-10 (lamellipodin), an effector of UNC-40 in neurons, however, has independent functions from UNC-6/UNC-40. Furthermore, unlike other UNC-40 effectors, its expression is regulated by FOS-1A, a transcription factor that promotes basement membrane breaching. Similar to UNC-40, however, MIG-10 localization to the invasive cell membrane is also dependent on the integrin INA-1/PAT-3. These studies indicate that MIG-10 has distinct functions from UNC-40 signaling in cell invasion, and demonstrate that integrin coordinates invasion by localizing these molecules to the cell-basement membrane interface.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3