Antimicrobial peptides do not directly contribute to aging in Drosophila, but improve lifespan by preventing dysbiosis

Author:

Hanson Mark A.11ORCID,Lemaitre Bruno11ORCID

Affiliation:

1. Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland

Abstract

ABSTRACT Antimicrobial peptides (AMPs) are innate immune effectors first studied for their role in host defence. Recent studies have implicated these peptides in the clearance of aberrant cells and in neurodegenerative syndromes. In Drosophila, many AMPs are produced downstream of Toll and Imd NF-κB pathways upon infection. Upon aging, AMPs are upregulated, drawing attention to these molecules as possible causes of age-associated inflammatory diseases. However, functional studies overexpressing or silencing these genes have been inconclusive. Using an isogenic set of AMP gene deletions, we investigated the net impact of AMPs on aging. Overall, we found no major effect of individual AMPs on lifespan, with the possible exception of Defensin. However, ΔAMP14 flies lacking seven AMP gene families displayed reduced lifespan. Increased bacterial load in the food of aged ΔAMP14 flies suggested that their lifespan reduction was due to microbiome dysbiosis, consistent with a previous study. Moreover, germ-free conditions extended the lifespan of ΔAMP14 flies. Overall, our results did not point to an overt role of individual AMPs in lifespan. Instead, we found that AMPs collectively impact lifespan by preventing dysbiosis during aging.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Novartis Foundation

Publisher

The Company of Biologists

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology and Microbiology (miscellaneous),Medicine (miscellaneous),Neuroscience (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3