Actin-dependent cytoplasmic streaming inC. elegansoogenesis

Author:

Wolke Uta12,Jezuit Erin A.13,Priess James R.132

Affiliation:

1. Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle,WA 98109, USA.

2. Howard Hughes Medical Institute, Seattle, WA 98109, USA.

3. Molecular and Cellular Biology Program and Department of Biology, University of Washington, Seattle, WA 98195, USA.

Abstract

Oocytes in the C. elegans gonad enlarge rapidly. During the stage of enlargement, they are transcriptionally quiescent, and it is not understood how they acquire large quantities of materials such as mRNA and protein. Enlarging oocytes are connected via cytoplasmic bridges to a large, younger population of transcriptionally active germ cells at various stages of mitosis and meiosis. We show here that there is a general streaming of gonad cytoplasm towards and into the enlarging oocytes, originating primarily from pachytene-stage germ cells. Because previous studies suggested that most or all of the pachytene germ cells have the potential to differentiate into oocytes, the pachytene cells appear to function transiently as nurse cells. Somatic gonadal cells that surround the germ cells do not appear essential for streaming. Instead, materials appear to be pulled into oocytes by forces generated either in, or adjacent to, the enlarging oocytes themselves. Streaming appears to be driven by the actomyosin cytoskeleton, although we show that populations of both microfilaments and microtubules are oriented in the direction of flow. Our study shows that oocyte enlargement in C. elegans differs significantly from that in Drosophila, where a small number of specialized nurse cells expel their contents into the enlarging oocyte.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3