Molt cycle regulation of protein synthesis in skeletal muscle of the blackback land crab, Gecarcinus lateralis, and the differential expression of a myostatin-like factor during atrophy induced by molting or unweighting

Author:

Covi J. A.1,Bader B. D.1,Chang E. S.2,Mykles D. L.1

Affiliation:

1. Department of Biology, Colorado State University, Fort Collins, CO 80523USA

2. Bodega Marine Laboratory, University of California-Davis, Bodega Bay, CA 94923USA

Abstract

SUMMARY In decapod crustaceans, claw muscle undergoes atrophy in response to elevated ecdysteroids while thoracic muscle undergoes atrophy in response to unweighting. The signaling pathways that regulate muscle atrophy in crustaceans are largely unknown. Myostatin is a negative regulator of muscle growth in mammals, and a myostatin-like cDNA is preferentially expressed in muscle of the land crab, Gecarcinus lateralis (Gl-Mstn). Contrary to prediction, levels of Gl-Mstn mRNA decreased dramatically in both the claw closer and weighted thoracic muscles when molting was induced by either eyestalk ablation (ESA) or multiple limb autotomy (MLA). However, the effect of molt induction was greater in the claw muscle. By late premolt, Gl-Mstn mRNA in the claw muscle decreased 81% and 94% in ESA and MLA animals, respectively, and was negatively correlated with ecdysteroids. Gl-Mstn mRNA in thoracic muscle decreased 68% and 82% in ESA and MLA animals, respectively, but was only weakly correlated with ecdysteroid. Claw and thoracic muscles also differed to varying extents in the expression of ecdysteroid receptor (Gl-EcR and Gl-RXR), elongation factor-2 (Gl-EF-2), and calpain T (Gl-CalpT) in response to molt induction, but levels of the four transcripts were not correlated with ecdysteroid. The downregulation of Gl-Mstn expression in premolt claw muscle coincided with 11- and 13-fold increases in protein synthesis in the myofibrillar and soluble protein fractions, respectively. Furthermore, the rate of the increase in the synthesis of soluble proteins was greater than that of myofibrillar proteins during early premolt (1.4:1, soluble:myofibrillar), but the two were equivalent during late premolt. By contrast, Gl-Mstn mRNA increased 3-fold and Gl-CalpT mRNA decreased 40% in unweighted thoracic muscle; there was little or no effect on Gl-EF-2, Gl-EcR, and Gl-RXR mRNA levels. These data indicate that Gl-Mstn expression is negatively regulated by both ecdysteroids and load-bearing contractile activity. The downregulation of Gl-Mstn in claw muscle may induce the elevated protein turnover associated with remodeling of the contractile apparatus during molt-induced atrophy. The upregulation of Gl-Mstn in unweighted thoracic muscle suggests that this factor is also involved in disuse atrophy when hemolymph ecdysteroid levels are low.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3