In vivo cellular adaptation to ER stress: survival strategies with double-edged consequences

Author:

Tsang Kwok Yeung1,Chan Danny1,Bateman John F.2,Cheah Kathryn S. E.1

Affiliation:

1. Department of Biochemistry and Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China

2. Murdoch Childrens Research Institute and Department of Biochemistry and Molecular Biology, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia

Abstract

Disturbances to the balance of protein synthesis, folding and secretion in the endoplasmic reticulum (ER) induce stress and thereby the ER stress signaling (ERSS) response, which alleviates this stress. In this Commentary, we review the emerging idea that ER stress caused by abnormal physiological conditions and/or mutations in genes that encode client proteins of the ER is a key factor underlying different developmental processes and the pathology of diverse diseases, including diabetes, neurodegeneration and skeletal dysplasias. Recent studies in mouse models indicate that the effect of ERSS in vivo and the nature of the cellular strategies induced to ameliorate pathological ER stress are crucial factors in determining cell fate and clinical disease features. Importantly, ERSS can affect cellular proliferation and the differentiation program; cells that survive the stress can become ‘reprogrammed’ or dysfunctional. These cell-autonomous adaptation strategies can generate a spectrum of context-dependent cellular consequences, ranging from recovery to death. Secondary effects can include altered cell–extracellular-matrix interactions and non-cell-autonomous alteration of paracrine signaling, which contribute to the final phenotypic outcome. Recent reports showing that ER stress can be alleviated by chemical compounds suggest the potential for novel therapeutic approaches.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3