Multifaceted roles of PTEN and TSC orchestrate growth and differentiation of Drosophila blood progenitors

Author:

Dragojlovic-Munther Michelle1,Martinez-Agosto Julian A.2

Affiliation:

1. Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA

2. Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA

Abstract

The innate plasticity of hematopoietic progenitors is tightly regulated to supply blood cells during normal hematopoiesis and in response to stress or infection. We demonstrate that in the Drosophila lymph gland (LG) the tumor suppressors TSC and PTEN control blood progenitor proliferation through a common TOR- and 4EBP-dependent pathway. Tsc2 or Pten deficiency in progenitors increases TOR signaling and causes LG overgrowth by increasing the number of actively dividing cells that accumulate high levels of phosphorylated (p) 4EBP during a critical window of growth. These phenotypes are associated with increased reactive oxygen species (ROS) levels in the LG, and scavenging ROS in progenitors is sufficient to rescue overgrowth. Blood progenitor number is also sensitive to starvation and hypoxia in a TOR-dependent manner. Differences between Tsc1/2 and Pten function become apparent at later stages. Loss of Tsc1/2 autonomously increases p4EBP and decreases pAKT levels, expands the number of intermediate progenitors and limits terminal differentiation, except for a late induction of lamellocytes. By contrast, absence of PTEN increases p4EBP and pAKT levels and induces myeloproliferative expansion of plasmatocytes and crystal cells. This increased malignancy is associated with non-autonomous increases in p4EBP levels within peripheral differentiating hemocytes, culminating in their premature release into circulation and demonstrating potential non-autonomous effects of Pten dysfunction on malignancy. This study highlights mechanistic differences between TSC and PTEN on TOR function and demonstrates the multifaceted roles of a nutrient-sensing pathway in orchestrating proliferation and differentiation of myeloid-specific blood progenitors through regulation of ROS levels and the resulting myeloproliferative disorder when dysregulated.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3