Biomechanics of quadrupedal walking: how do four-legged animals achieve inverted pendulum-like movements?

Author:

Griffin Timothy M.1,Main Russell P.2,Farley Claire T.3

Affiliation:

1. Orthopaedic Bioengineering Laboratory, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA

2. Concord Field Station, Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Bedford, MA 01730,USA

3. Locomotion Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, CO 80309, USA

Abstract

SUMMARYWalking involves a cyclic exchange of gravitational potential energy and kinetic energy of the center of mass. Our goal was to understand how the limbs of walking quadrupeds coordinate the vertical movements of the fore and hind quarters to produce these inverted pendulum-like movements. We collected kinematic and ground reaction force data from dogs walking over a range of speeds. We found that the fore and hind quarters of dogs behaved like two independent bipeds, each vaulting up and over its respective support limb. The center of mass moved up and down twice per stride, like a single walking biped, and up to 70% of the mechanical energy required to lift and accelerate the center of mass was recovered via the inverted pendulum mechanism. To understand how the limbs produce these center of mass movements, we created a simple model of two independent pendulums representing the movements of the fore and hind quarters. The model predicted that the fore and hind quarter movements would completely offset each other if the fore limb lagged the hind limb by 25% of the stride time and body mass was distributed equally between the fore and hind quarters. The primary reason that dogs did not walk with a flat trajectory of the center of mass was that each fore limb lagged its ipsilateral hind limb by only 15% of the stride time and thereby produced time periods when the fore and hind quarters moved up or down simultaneously. The secondary reason was that the fore limbs supported 63% of body mass. Consistent with these experimental results, the two-pendulum model predicts that the center of mass will undergo two fluctuations per stride cycle if limb phase is less than 25% and/or if the total mass is not distributed evenly between the fore or hind quarters.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 126 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3