Alteration of Nrp1 signaling at different stages of olfactory neuron maturation promotes glomerular shifts along distinct axes in the olfactory bulb

Author:

Assens Alexis12,Dal Col Julien12,Njoku Anthony12,Dietschi Quentin12,Kan Chenda12,Feinstein Paul3,Carleton Alan24,Rodriguez Ivan12ORCID

Affiliation:

1. Department of Genetics and Evolution, University of Geneva, Geneva 1205, Switzerland

2. Geneva Neuroscience Center, University of Geneva, Geneva 1205, Switzerland

3. Department of Biological Sciences, Hunter College and The Graduate Center Biochemistry, Biology and Biopsychology and Behavioral Neuroscience Programs, CUNY, New York, New York, United States of America

4. Department of Basic Neurosciences, School of Medicine, University of Geneva, Geneva 1205, Switzerland

Abstract

The building of the topographic map in the mammalian olfactory bulb is explained by a model based on two axes along which sensory neurons are guided: one dorso-ventral and the other antero-posterior. This latter axis relies on specific expression levels of Neuropilin 1 (Nrp1). To evaluate the role played by this receptor in this process, we used an in vivo genetic approach to decrease or suppress it in specific neuronal populations and at different time points during axonal targeting. We observed, in neurons that express either the M71 or the M72 odorant receptors, that the inactivation of Nrp1 leads to two distinct wiring alterations, whose incidence depends on the time at which Nrp1 expression is altered: first, a surprising dorsal shift of the M71 and M72 glomeruli that often fuse with their contralateral counterparts, and second, the formation of anteriorized glomeruli. The two phenotypes are partly recapitulated in mice lacking the Nrp1 ligand Semaphorin 3A (Sema3A), and in mice whose sensory neurons express a Nrp1 mutant unable to bind Sema3A. Finally, by using a mosaic conditional approach, we show that M71 axonal fibers can bypass the Nrp1 signals that define their target area, since they are hijacked and coalesce with Nrp1-deficient M71-expressing axons that target somewhere else. Together, these findings show drastically different axonal targeting outcomes dependent on the timing at which Nrp1/Sema3A signaling is altered.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

National Institute on Minority Health and Health Disparities

National Institutes of Health

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3