Transport to the plasma membrane is regulated differently early and late in the cell cycle in Saccharomyces cerevisiae

Author:

Zanolari Bettina1,Rockenbauch Uli1,Trautwein Mark1,Clay Lorena2,Barral Yves2,Spang Anne1

Affiliation:

1. Biozentrum, University Basel, CH-4056 Basel, Switzerland

2. ETH Zürich Hönggerberg, CH-8049 Zürich, Switzerland

Abstract

Traffic from the trans-Golgi network to the plasma membrane is thought to occur through at least two different independent pathways. The chitin synthase Chs3p requires the exomer complex and Arf1p to reach the bud neck of yeast cells in a cell-cycle-dependent manner, whereas the hexose transporter Hxt2p localizes over the entire plasma membrane independently of the exomer complex. Here, we conducted a visual screen for communalities and differences between the exomer-dependent and exomer-independent transport to the plasma membrane in Saccharomyces cerevisiae. We found that most of the components that are required for the fusion of transport vesicles with the plasma membrane, are involved in localization of both Chs3p and Hxt2p. However, the lethal giant larva homologue Sro7p is required primarily for the targeting of Chs3p, and not Hxt2p or other cargoes such as Itr1p, Cwp2p and Pma1p. Interestingly, this transport defect was more pronounced in large-budded cells just before cytokinesis than in small-budded cells. In addition, we found that the yeast Rab11 homologue Ypt31p determines the residence time of Chs3p in the bud neck of small-budded, but not large-budded, cells. We propose that transport to and from the bud neck is regulated differently in small- and large-budded cells, and differs early and late in the cell cycle.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3