Interaction of mouse sperm with purified sperm receptors covalently linked to silica beads

Author:

Vazquez M.H.1,Phillips D.M.1,Wassarman P.M.1

Affiliation:

1. Department of Cell and Developmental Biology, Roche Institute of Molecular Biology, Roche Research Center, Nutley, NJ 07110.

Abstract

We describe a solid-phase assay that has permitted further analysis of zona pellucida glycoprotein, ZP3, as sperm receptor and acrosome reaction-inducer during fertilization in mice. The assay employs silica beads that contain epoxy groups to which purified, mouse oocyte ZP3 is covalently linked (ZP3-beads). ZP3-beads were characterized, e.g. by whole-mount autoradiography and flow cytofluorometry, incubated with capacitated mouse sperm under a variety of conditions, and the extent of sperm binding determined by light microscopy. Results of experiments presented suggest the following: (1) sperm bind specifically to ZP3-beads, but not to silica beads either exposed to 2-aminoethanol or derivatized with oocyte ZP2, fetuin or bovine serum albumin. (2) In nearly all cases, only one sperm binds per ZP3-bead and binding occurs via the sperm head. (3) The extent of sperm binding to ZP3-beads is dependent on ZP3 and sperm concentrations, as well as on incubation time and temperature. (4) Sperm binding to ZP3-beads is unaffected by antibodies directed against ZP3, but is inhibited in a reversible manner by treatment of ZP3-beads with galactose oxidase. (5) Only acrosome-intact sperm bind to ZP3-beads but, once bound, sperm can undergo the acrosome reaction, which results in their release from ZP3-beads. (6) Islet-activating protein and 3-quinuclidinyl benzilate, two inhibitors of the zona pellucida-induced acrosome reaction, prevent sperm bound to ZP3-beads from undergoing the acrosome reaction. These results confirm and extend previous studies of sperm-egg interaction in mice, and suggest that the solid-phase assay will be useful for both cellular and biochemical analyses of mammalian fertilization.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3