Changes to desmosomal antigens and lectin-binding sites during differentiation in normal human epidermis: a quantitative ultrastructural study

Author:

Skerrow C.J.1,Clelland D.G.1,Skerrow D.1

Affiliation:

1. University of Glasgow, Department of Dermatology, Scotland, UK.

Abstract

During epidermal differentiation, desmosomes undergo a series of changes in their abundance, structure and properties, which has previously been defined by conventional electron microscopy and the use of antibodies to desmosomal proteins at the light-microscope level. Such changes in a major adhesive organelle would be expected to have a significant role in the maintenance of epidermal organization, and therefore require more detailed characterization. In the present study, modifications to certain desmosomal components in normal human epidermis have been located and quantified by immunogold electron microscopy. Antibodies to desmosomal protein dp3 and glycoprotein dg1 were used to label the cytoplasmic regions of the junctions and lectins concanavalin A (ConA) and wheat germ agglutinin (WGA) to probe the extracellular glycosylated material. Binding was measured at histologically defined levels and expressed as gold particles per microns of desmosome length (linear particle density: LPD). In addition, desmosome frequency, expressed as the percentage of the cell membrane length occupied by desmosomes, was measured. Highly significant changes in desmosome frequency, diameter and LPD were observed between epidermal strata and, in basal and upper horny cells, between different regions of the same cell surface. These parameters rose to a maximum in the spinous or granular layers: their subsequent decrease continued without interruption across the interface between the living and terminally differentiated horny layers. Remaining reactivity with antibodies, but not lectins, was almost completely abolished immediately before the final disintegration of the desmosome structure in the lower horny layer. In contrast, numerous large, highly immunoreactive desmosomes were retained up to the outer surface in the grossly thickened horny layer found in callus. Though the overall pattern of a rise followed by a fall was similar for all parameters measured, differences were observed between probes. Thus, the extent of the rise in available antigen between the lateral and apical surfaces of the basal cell was greater for dg1 than for dp3; the subsequent decrease in dp3 antigens in upper epidermal layers was more rapid than that for dg1, and changes to both antigens preceded those to lectin-binding sites. These results show that differences in desmosome frequency and in the size and antibody-binding characteristics of individual junctions underlie the heterogeneous distribution of desmosomal components within epidermis that is found by light-microscope immunocytochemistry. They further suggest that the disintegration of desmosomes within normal horny layer, which is an essential preliminary to desquamation, is the culmination of a sequence of events that begins in the upper living tissue and initially involves cytoplasmic components.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The stratum corneum: the rampart of the mammalian body;Veterinary Dermatology;2013-01-19

2. Stratum corneum proteases and dry skin conditions;Cell and Tissue Research;2012-10-09

3. The DSPII splice variant is critical for desmosome-mediated HaCaT keratinocyte adhesion;Journal of Cell Science;2012-01-01

4. Desquamation: It Is Almost All About Proteases;Treatment of Dry Skin Syndrome;2012

5. Order and disorder in corneocyte adhesion;The Journal of Dermatology;2011-05-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3