The Hymenopteran Skylight Compass: Matched Filtering and Parallel Coding

Author:

WEHNER RüDIGER1

Affiliation:

1. Zöologisches Institut der Universität Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

Abstract

In deriving compass information from the pattern of polarized light in the sky (celestial e-vector pattern), hymenopteran insects like bees and ants accomplish a truly formidable task. Theoretically, one could solve the task by going back to first principles and using spherical geometry to compute the exact position of the sun from single patches of polarized skylight. The insect, however, does not resort to such computationally demanding solutions. Instead, during its evolutionary history, it has incorporated the fundamental spatial properties of the celestial pattern of polarization in the very periphery of its nervous system, the photoreceptor layer. There, in a specialized part of the retina (POL area), the analyser (microvillar) directions of the photoreceptors are arranged in a way that mimics the e-vector pattern in the sky {matched filtering). When scanning the sky, i.e. sweeping its matched array of analysers across the celestial e-vector pattern, the insect experiences peak responses of summed receptor outputs whenever it is aligned with the symmetry plane of the sky, which includes the solar meridian, the perpendicular from the sun to the horizon. Hence, the insect uses polarized skylight merely as a means of determining the symmetry plane of the polarization pattern, and must resort to other visual subsystems to deal with the remaining aspects of the compass problem (parallel coding). The more general message to be derived from these results is that in small brains sensory coding consists of adapting the peripheral rather than the central networks of the brain to the functional properties of the particular task to be solved. The matched peripheral networks translate the sensory information needed for performing a particular mode of behaviour into a neuronal code that can easily be understood by well-established, unspecialized central circuits. This principle of sensory coding implies that the peripheral parts of the nervous system exhibit higher evolutionary plasticity than the more central ones. Furthermore, it is reminiscent of what one observes at the cellular level of information processing, where the membrane-bound receptor molecules are specialized for particular molecular signals, but the subsequent molecular events are not. Note: Dedicated to Professor Dr Martin Lindauer in honour of his 70th birthday.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3