Principles of auditory information-processing derived from neuroethology

Author:

Suga N.1

Affiliation:

1. Department of Biology, Washington University, St Louis, MO 63130.

Abstract

For auditory imaging, a bat emits orientation sounds (pulses) and listens to echoes. The parameters characterizing a pulse-echo pair each convey particular types of biosonar information. For example, a Doppler shift (a difference in frequency between an emitted pulse and its echo) carries velocity information. For a 61-kHz sound, a 1.0-kHz Doppler shift corresponds to 2.8 ms-1 velocity. The delay of the echo from the pulse conveys distance (range) information. A 1.0-ms echo delay corresponds to a target distance of 17 cm. The auditory system of the mustached bat, Pteronotus parnelli, from Central America solves the computational problems in analyzing these parameters by creating maps in the cerebral cortex. The pulse of the mustached bat is complex. It consists of four harmonics, each of which contains a long constant-frequency (CF) component and a short frequency-modulated (FM) component. Therefore, there are eight components in the emitted pulse (CF1-4 and FM1-4). The CF signal is particularly suited for target velocity measurement, whereas the FM signal is suited for target distance measurement. Since the eight components differ from each other in frequency, they are analyzed in parallel at different regions of the basilar membrane in the inner ear. Then, they are separately coded by primary auditory neurons and are sent up to the auditory cortex through several auditory nuclei. During the ascent of the signals through these auditory nuclei, neurons responding to the FM components process range information, while other neurons responding to the CF components process velocity information. A comparison of the data obtained from the mustached bat with those obtained from other species illustrates both the specialized neural mechanisms specific to the bat's auditory system, and the general neural mechanisms which are probably shared with many different types of animals.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3