Affiliation:
1. Department of Mechanical/ and Aerospace Engineering University at Buffalo Buffalo, New York 14260, USA
Abstract
Two-dimensional computational fluid dynamics (CFD) is applied to better understand the effects of wing cross-sectional morphology on flow field and force production. The influence of wing cross-section on insect scale flapping flight performance is investigated for the first time using a morphologically representative model of a bee (Bombus pensylvanicus) wing. The bee wing cross-section was determined using a microCT scanner. The results of the bee wing are compared with flat and elliptical cross-sections, representative of those used in modern literature, to determine the impact of profile variation on aerodynamic performance. The flow field surrounding each cross-section and the resulting forces are resolved using CFD for a flight speed range of 1 to 5 m/s. A significant variation in vortex formation is found when comparing the ellipse and flat plate with the true bee wing. During the upstroke, the bee and approximate wing cross-sections have a much shorter wake structure than the flat plate or ellipse. During the downstroke, the flat plate and elliptical cross-sections generate a single leading edge vortex, while the approximate and bee wings generate numerous, smaller structures that are shed throughout the stroke. Comparing the instantaneous aerodynamic forces on the wing, the ellipse and flat plate sections deviate progressively with velocity from the true bee wing. Based on the present findings, a simplified cross-section of an insect wing can misrepresent the flow field and force production. We present the first aerodynamic study using a true insect wing cross-section and show that the wing corrugation increases the LEV formation frequency for a given set of kinematics.
Publisher
The Company of Biologists
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献