Differential roles for 3-OSTs in the regulation of cilia length and motility

Author:

Neugebauer Judith M.1,Cadwallader Adam B.1,Amack Jeffrey D.1,Bisgrove Brent W.1,Yost H. Joseph1

Affiliation:

1. Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.

Abstract

As cells integrate molecular signals from their environment, cell surface receptors require modified proteoglycans for the robust activation of signaling pathways. Heparan sulfate proteoglycans (HSPGs) have long unbranched chains of repetitive disaccharide units that can be sulfated at specific positions by heparan sulfate O-sulfotransferase (OST) families. Here, we show that two members of the 3-OST family are required in distinct signaling pathways to control left-right (LR) patterning through control of Kupffer’s vesicle (KV) cilia length and motility. 3-OST-5 functions in the fibroblast growth factor pathway to control cilia length via the ciliogenic transcription factors FoxJ1a and Rfx2. By contrast, a second 3-OST family member, 3-OST-6, does not regulate cilia length, but regulates cilia motility via kinesin motor molecule (Kif3b) expression and cilia arm dynein assembly. Thus, two 3-OST family members cell-autonomously control LR patterning through distinct pathways that regulate KV fluid flow. We propose that individual 3-OST isozymes create distinct modified domains or ‘glycocodes’ on cell surface proteoglycans, which in turn regulate the response to diverse cell signaling pathways.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3