Circularly polarized light detection in stomatopod crustaceans: a comparison of photoreceptors and possible function in six species

Author:

Templin Rachel M1ORCID,How Martin J2,Roberts Nicholas W2,Chiou Tsyr-Huei3,Marshall Justin1

Affiliation:

1. Queensland Brain Institute, University of Queensland, St Lucia, QLD 4072, Australia

2. School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK

3. Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan

Abstract

A combination of behavioural and electrophysiological experiments have previously shown that two species of stomatopod, Odontadactylus scyllarus and Gonodactylaceus falcatus, can differentiate between left and right handed circularly polarized light (CPL), and between CPL and linearly polarized light (LPL). It remains unknown if these visual abilities are common across all stomatopod species, and if so, how circular polarization sensitivity may vary between and within species. A sub-section of the midband, a specialized region of stomatopod eyes, contains distally placed photoreceptor cells, termed R8 (retinular cell number 8). These cells are specifically built with unidirectional microvilli and appear to be angled precisely to convert CPL into LPL. They are mostly quarter-wave retarders for human visible light (400-700nm) as well as being ultraviolet sensitive linear polarization detectors. The effectiveness of the R8 cells in this role is determined by their geometric and optical properties. In particular, the length and birefringence of the R8 cells are critical for retardation efficiency. Here, our comparative studies show that most species investigated have the theoretical ability to convert CPL into LPL, such that the handedness of an incoming circular reflection or signal could be discriminated. One species, Haptosquilla trispinosa, shows less than quarter-wave retardance. While some species are known to produce circularly polarized reflections (some Odontodactylus species and G. falcatus for example), others do not, so a variety of functions for this ability are worth considering.

Funder

Asian Office of Aerospace Research and Development

Australian Research Council

Air Force Office of Scientific Research

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3