The influence of PKA treatment on the Ca2+ activation of force generation by trout cardiac muscle

Author:

Gillis Todd E.1,Klaiman Jordan M.1

Affiliation:

1. Department of Integrative Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1

Abstract

SUMMARY β-Adrenergic stimulation of the mammalian heart increases heart rate, the strength of contraction as well as the kinetics of force generation and relaxation. These effects are due to the phosphorylation of select membrane and thin filament proteins by cAMP-activated protein kinase (PKA). At the level of the sarcomere, it is typically the phosphorylation of cardiac myosin binding protein C (cMyBP-C) and cardiac troponin I (cTnI) that is responsible for the change in the kinetics of contraction and relaxation. Trout cTnI (ScTnI) lacks two critical PKA targets within the N-terminus of the protein that, when phosphorylated in mammalian cTnI, cause a reduction in myofilament Ca2+ affinity. To determine what role the contractile element plays in the response of the trout heart to β-adrenergic stimulation, we characterized the influence of PKA treatment on the Ca2+ activation of skinned preparations dissected from ventricular trabeculae. In these experiments, isometric force generation and the rate of force development were measured over a range of Ca2+ concentrations. The results demonstrate that PKA treatment does not influence the Ca2+ sensitivity of force generation but it decreases maximum force generation by 25% and the rate of force re-development at maximal activation by 46%. Analysis of the trabeculae preparations for phosphoproteins revealed that PKA treatment phosphorylated myosin light chain 2 but not cTnI or cMyBP-C. These results indicate that the function of the trout cardiac contractile element is altered by PKA phosphorylation but in a manner different from that in mammalian heart.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3