The effects of temperature on the proxies of visual detection of Danio rerio larvae: observations from the optic tectum

Author:

Babkiewicz Ewa1ORCID,Bazała Michał2,Urban Paulina34ORCID,Maszczyk Piotr1ORCID,Markowska Magdalena5,Gliwicz Z. Maciej1

Affiliation:

1. Department of Hydrobiology, Faculty of Biology , University of Warsaw at Biological and Chemical Research Centre, Żwirki i Wigury 101, 02-089 Warsaw, Poland

2. Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Księcia Trojdena 4, 02-109 Warsaw, Poland

3. Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland

4. College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland

5. Department of Animal Physiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland

Abstract

ABSTRACT Numerous studies have indicated that temperature improves the visual capabilities of different ectotherms, including a variety of fish species. However, none of these studies has directly tested whether elevated temperature extends the visual detection distance – the distance from which a visual stimulus is detected. To test this hypothesis, we investigated the effect of temperature on the visual detection distance of zebrafish (Danio rerio) larvae by measuring the largest distance from a moving target that induced a neural response in the optic tectum. We applied advanced methods of functional calcium imaging such as selective plane illumination microscopy in combination with a miniature OLED screen. The screen displayed an artificial, mobile prey, appearing in the visual field of the larvae. We performed experiments in three temperature treatments (18, 23 and 28°C) on transgenic fish expressing a fluorescent probe (GCaMP5G) that changes intensity in response to altered Ca2+ concentrations in the nerves in the optic tectum. Based on the obtained data, we also measured three additional parameters of the neural response in the optic tectum, each being a proxy of sensitivity to changes in the stimulus movement. We did not confirm our hypothesis, since the visual detection distance shortened as the temperature increased. Moreover, all of the three additional parameters indicated a negative effect of the temperature on the speed of the neural response to the stimuli. However, the obtained results could be explained not only by worse visual capabilities at the elevated temperature, but also by the differences in the visual field and in turn, the retinotopic location of the visual stimulus between the temperature treatments, since the stimulus in the experiments moved horizontally rather than forward and backward from the fish's eye.

Funder

Polish National Science Centre

Publisher

The Company of Biologists

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3