Weak bases partially activate Xenopus eggs and permit changes in membrane conductance whilst inhibiting cortical granule exocytosis

Author:

Charbonneau M.1,Webb D.J.1

Affiliation:

1. Laboratoire de Cytologie Experimentale, UA CNRS 256, Universite de Rennes I, France.

Abstract

At extracellular pH values close to their pKa values the weak bases, ammonia and procaine, elicited a series of events in non-activated Xenopus eggs, some of which resembled those normally occurring at fertilization. These included: (1) a transient increase in membrane conductance; (2) modification of the microvilli; (3) thickening of the cortical cytoplasm and displacement of the cortical granules; (4) pigment accumulation; (5) contractions and shape changes. However, these eggs did not undergo the cortical reaction nor emit the second polar body. Cortical granule exocytosis of inseminated or artificially stimulated eggs was inhibited if the eggs had been previously treated for 15 min with the weak base and subsequently rinsed. Multiple sperm-entry sites were exhibited by the inseminated eggs, suggesting polyspermy. However, such eggs did not cleave and although sperm had fused with the egg membrane, they were not incorporated. Nevertheless, a transient increase in membrane conductance was evoked, which was longer in duration and had a slightly different form from that normally accompanying fertilization. In these eggs cortical granules were intact but displaced away from the plasma membrane. Prolonged contact with the weak base rendered eggs totally unresponsive to sperm or artificial stimuli but eggs recovered when rinsed sufficiently. These effects of weak bases on unfertilized Xenopus eggs or during fertilization were completely absent at pH 7.4. Although changes in intracellular pH or Ca2+ may be involved in these phenomena, direct action by the weak base itself cannot be ruled out.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3