Vesicular PtdIns(3,4,5)P3 and Rab 7 are key effectors of zygote nuclear membrane fusion

Author:

Lete Marta G.1234,Byrne Richard D.5,Alonso Alicia2,Poccia Dominic6,Larijani Banafshé3ORCID

Affiliation:

1. Cell Biophysics Laboratory, Ikerbasque Basque Foundation for Science, Research Centre for Experimental Marine Biology and Biotechnology (PiE) and Biofísika Instituto (UPV/EHU, CSIC), University of the Basque Country, Spain

2. Biofísika Instituto (UPV/EHU, CSIC) and Departamento de Bioquímica, University of the Basque Country, Barrio Sarriena s/n, 48940 Leioa, Spain

3. Cell Biophysics Laboratory, Research Centre for Experimental Marine Biology and Biotechnology (PiE), Biofisika Instituto (UPV/EHU,CSIC) and, University of the Basque Country, Leioa 48940, Spain

4. Present address: Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Sciences Center, College Station, Texas 77843-1114, USA

5. The Francis Crick Institute, Mill Hill Laboratory The Ridgeway London, NW7 1AA, UK

6. Department of Biology, Amherst College, Amherst, MA 01002, USA

Abstract

Regulation of nuclear envelope (NE) dynamics is an important example of the universal phenomena of membrane fusion. The signalling molecules involved in nuclear membrane fusion may also be conserved in the formation of both pronuclear and zygote NEs in the fertilised egg. Here, we determine that Class I PI3-kinases are needed for in vitro nuclear envelope formation. We show that, in vivo, PtdIns(3,4,5)P3 is transiently located in vesicles around the male pronucleus at the time of nuclear envelope formation and around male and female pronuclei prior to membrane fusion. We illustrate that Class I PI3-kinase activity is also necessary for fusion of the female and male pronuclear membranes. We demonstrate, by coincidence amplified-FRET monitored by fluorescence lifetime imaging microscopy (FLIM), a protein-lipid interaction of Rab7 GTPase and PtdIns(3,4,5)P3 occurring during pronuclear membrane fusion to create the zygote nuclear envelope. We present a working model, which includes several molecular steps in the pathways controlling fusion of NE membranes.

Funder

Ikerbasque Foundation of Science

Spanish Ministry of Economy

Basque Government

Faculty Research Award of the Axel Schupf 57Fund for Intellectual Life and Senior Sabbatical Fellowship, Amherst College

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3