Neurogenic role of Gcm transcription factors is conserved in chicken spinal cord
Author:
Soustelle Laurent1, Trousse Françoise2, Jacques Cécile1, Ceron Julian1, Cochard Philippe2, Soula Cathy2, Giangrande Angela1
Affiliation:
1. Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, B.P.10142, 67404 Illkirch Cedex, C.U. de Strasbourg, France. 2. Centre de Biologie du Développement, UMR5547 CNRS/UPS,Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex,France.
Abstract
Although glial cells missing (gcm) genes are known as glial determinants in the fly embryo, the role of vertebrate orthologs in the central nervous system is still under debate. Here we show for the first time that the chicken ortholog of fly gcm (herein referred to as c-Gcm1), is expressed in early neuronal lineages of the developing spinal cord and is required for neural progenitors to differentiate as neurons. Moreover, c-Gcm1 overexpression is sufficient to trigger cell cycle exit and neuronal differentiation in neural progenitors. Thus, c-Gcm1 expression constitutes a crucial step in the developmental cascade that prompts progenitors to generate neurons: c-Gcm1 acts downstream of proneural (neurogenin) and progenitor (Sox1-3) factors and upstream of NeuroM neuronal differentiation factor. Strikingly, this neurogenic role is not specific to the vertebrate gene, as fly gcmand gcm2 are also sufficient to induce the expression of neuronal markers. Interestingly, the neurogenic role is restricted to post-embryonic stages and we identify two novel brain neuronal lineages expressing and requiring gcm genes. Finally, we show that fly gcm and the chick and mouse orthologs induce expression of neural markers in HeLa cells. These data, which demonstrate a conserved neurogenic role for Gcm transcription factors, call for a re-evaluation of the mode of action of these genes during evolution.
Publisher
The Company of Biologists
Subject
Developmental Biology,Molecular Biology
Reference45 articles.
1. Agius, E., Soukkarieh, C., Danesin, C., Kan, P., Takebayashi,H., Soula, C. and Cochard, P. (2004). Converse control of oligodendrocyte and astrocyte lineage development by Sonic hedgehog in the chick spinal cord. Dev. Biol.270,308-321. 2. Alfonso, T. B. and Jones, B. W. (2002). gcm2 promotes glial cell differentiation and is required with glial cells missing for macrophage development in Drosophila. Dev. Biol.248,369-383. 3. Altshuller, Y., Copeland, N. G., Gilbert, D. J., Jenkins, N. A. and Frohman, M. A. (1996). Gcm1, a mammalian homolog of Drosophila glial cells missing. FEBS Lett.393,201-204. 4. Anson-Cartwright, L., Dawson, K., Holmyard, D., Fisher, S. J.,Lazzarini, R. A. and Cross, J. C. (2000). The glial cells missing-1 protein is essential for branching morphogenesis in the chorioallantoic placenta. Nat. Genet.25,311-314. 5. Basyuk, E., Cross, J. C., Corbin, J., Nakayama, H., Hunter, P.,Nait-Oumesmar, B. and Lazzarini, R. A. (1999). Murine Gcm1 gene is expressed in a subset of placental trophoblast cells. Dev. Dyn.214,303-311.
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|