Functional Principles of Pattern Generation for Walking Movements of Stick Insect Forelegs: The Role of the Femoral Chordotonal Organ Afferences

Author:

BÄSSLER ULRICH1

Affiliation:

1. Fachbereich Biologie der Universität D-6750 Kaiserslautern, FRG

Abstract

A rampwise stretch of the femoral chordotonal organ is known often to elicit a response in the active decerebrate stick insect that is termed an ‘active reaction’, and which can be considered to represent part of the step cycle. During the first part of the response, the flexor motor neurones are excited and the excitatory extensor motor neurones are inhibited, forming a positive feedback loop. When the chordotonal organ reaches a position corresponding to a flexed femur-tibia joint, the flexor motor neurones are inhibited and the extensor motor neurones are excited. In this study, extracellular and intracellular recordings showed that, during an active reaction, the excitation of the retractor unguis motor neurones usually paralleled that of the flexor motor neurones, whereas the protractor coxae motor neurones were less strongly coupled to this system. The first part of the active reaction occurred only at low stimulus velocities. At high stimulus velocities negative feedback was present. The first part therefore represents some kind of velocity-control-system for active flexions. Electrical stimulation of the nerve containing the axons of trochanteral campaniform sensilla and of the hairfield trHP decreased the likelihood that concurrent chordotonal organ stimulation would elicit an active reaction. Furthermore, most of the active reactions that occurred under these stimulus conditions involved only the flexor tibiae muscle. The results indicate that: the walking pattern generator is composed of subunits that are only loosely coupled centrally; it probably does not include a central pattern generator; and generation of an active reaction is a two-step process.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3