Physiological Correlates of Interspecific Variation in Acid Tolerance in Fish

Author:

FREDA J.1,MCDONALD D. G.2

Affiliation:

1. Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1; Fish Physiology and Toxicology Laboratory, Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA

2. Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1

Abstract

This study investigated ion regulation in relation to water pH in three species of fish of differing tolerance to low pH (common shiners, Notropis cornutus, most sensitive; rainbow trout, Salmo gairdneri, intermediate; yellow perch, Perca flavescens, least sensitive). Increasing sensitivity to exposure to low pH was characterized by shorter survival times, greater losses of whole-body ions, more complete inhibition of Na+ uptake, and greater stimulation of Na+ efflux, the latter being the most important factor in determining survival. Interspecific variations in acid tolerance were also correlated with Na+ transport characteristics at circumneutral pH; Km was directly correlated and Vmax inversely correlated with acid tolerance. In addition, there were large qualitative differences among the species in the Ca2+-dependence of Na+ efflux. Sodium efflux induced by low pH was markedly Ca2+-dependent in both trout and shiners in a manner consistent with a simple competition between Ca2+ and H+ for gill binding sites. The increased sensitivity of shiners relative to trout was related to lowered Ca2+- binding activity. In contrast, Na+ efflux in perch was virtually unaffected by water [Ca2+]. Similarly, La3+ (a Ca2+ antagonist) stimulated higher Na+ losses from shiners than from trout, but had little effect upon perch. Ionic losses produced by saturating La3+ concentrations were generally lower than those produced by H+, suggesting that Ca2+ displacement is not the only mechanism for increased gill permeability at low pH. Nonetheless, the results obtained are consistent with the notion that acid tolerance may be related to Ca2+-binding activity in some species (e.g. trout and shiners) although not in others (e.g. perch).

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3