Interplay between paracrine signaling and gap junctional communication in ovarian follicles

Author:

Gittens Joanne E. I.12,Barr Kevin J.12,Vanderhyden Barbara C.3,Kidder Gerald M.12

Affiliation:

1. Departments of Physiology and Pharmacology, Obstetrics and Gynaecology, and Paediatrics, The University of Western Ontario, London, Ontario N6A 5C1, Canada

2. Child Health Research Institute, 800 Commissioners Road East, London, Ontario N6C 2V5, Canada

3. Center for Cancer Therapeutics, Ottawa Regional Cancer Centre, 503 Smyth Road, Ottawa, Ontario K1H 1C4, Canada

Abstract

Intercellular communication is required for ovarian folliculogenesis. This is apparent in mice lacking connexin43 (Cx43, a gap junction protein strongly expressed in granulosa cells), or growth/differentiation factor-9 (GDF9, an oocyte-specific growth factor that stimulates granulosa cell proliferation and differentiation), or in mice expressing a mutant form of Kit ligand (KITL, a paracrine factor that, in the ovary, is secreted by granulosa cells to stimulate oocyte growth). In all of these mutant lines, follicle growth is impaired suggesting a possible interaction between paracrine signaling and gap junctional communication. To assess this possibility, we analyzed gene expression in mutant ovaries. Despite the lack of gap junctional coupling between granulosa cells of Cx43 null mutant ovaries, expression of the genes encoding KITL and its receptor, KIT, is maintained. Furthermore, GDF9 expression is maintained. In GDF9 null mutant ovaries, there is no apparent change in Cx43 expression and, correspondingly, the granulosa cells remain coupled. There is also no increase in granulosa cell apoptosis in ovaries lacking Cx43 or GDF9. Staining for proliferating cell nuclear antigen (PCNA) revealed that the granulosa cells of Cx43 null mutant ovaries have a reduced frequency of DNA synthesis. Using both radiolabeled thymidine incorporation and PCNA staining in vitro, we showed that recombinant GDF9 could restore the proliferation of coupling-deficient granulosa cells to the level of control cells. These results indicate that impaired folliculogenesis in mice lacking Cx43 is due at least in part to reduced responsiveness of granulosa cells to oocyte-derived GDF9, indicating an interaction between these two modes of intercellular communication.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3