QTL mapping for microtuber dormancy and GA3 content in a diploid potato population

Author:

Naz Raja Mohib Muazzam1,Li Mengtai1,Ramzan Safia1,Li Gege1,Liu Jun1,Cai Xingkui1ORCID,Xie Conghua1

Affiliation:

1. National Center for Vegetable Improvement (Central China); Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture; Huazhong Agricultural University, Wuhan 430070, People's Republic of China

Abstract

The genetic control of dormancy is poorly understood in most plant species but dormancy is a prominent feature for the potato industry. We used the microtuber system in which tubers were produced in vitro and stored at 20°C, to perform quantitative trait locus (QTL) analysis for dormancy and gibberellic acid (GA3) content in an F1 population consisting of 178 genotypes derived from an interspecific cross between Solanum chacoense acc. PI 320285 (long dormancy) and S. phureja acc. DM1-3 516 R44 (short dormancy). In this analysis, 163 markers were used to construct a genetic map with a total length of 591.8 cM. Through QTL analysis, we identified 22 markers closely linked to the timing of dormancy release and GA3 content. The male parent alleles were closely related with long dormancy, with the most significant effect on chromosome I, which accounted for 9.4% of phenotypic variation. The dormancy and GA3 QTLs localized to the same position in the genome, confirming that same genomic region controls GA3 content at different developmental stages or in dormant and sprouting tubers. The identified QTLs may be useful for future breeding strategies and studies of dormancy in potato.

Funder

Ministry of Agriculture of the People's Republic of China

Natural Science Foundation of Hubei Province

Special Fund for Agro-scientific Research in the Public Interest, Hubei

Publisher

The Company of Biologists

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3