Diverse gap junctions modulate distinct mechanisms for fiber cell formation during lens development and cataractogenesis

Author:

Xia Chun-hong1,Liu Haiquan1,Cheung Debra1,Cheng Catherine2,Wang Eddie1,Du Xin3,Beutler Bruce3,Lo Woo-Kuen4,Gong Xiaohua12

Affiliation:

1. School of Optometry and Vision Science Program, University of California at Berkeley, Berkeley, CA 94720, USA.

2. UC Berkeley/UCSF Joint Bioengineering Graduate Program, University of California at Berkeley, Berkeley, CA 94720, USA.

3. Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037,USA.

4. Department of Anatomy and Neurobiology, Morehouse School of Medicine, Atlanta,GA 30310, USA.

Abstract

Different mutations of α3 connexin (Cx46 or Gja8) andα8 connexin (Cx50 or Gja8), subunits of lens gap junction channels, cause a variety of cataracts via unknown mechanisms. We identified a dominant cataractous mouse line (L1), caused by a missense α8 connexin mutation that resulted in the expression of α8-S50P mutant proteins. Histology studies showed that primary lens fiber cells failed to fully elongate in heterozygous α8S50P/+ embryonic lenses, but not in homozygous α8S50P/S50P, α8-/- andα3-/- α8-/- mutant embryonic lenses. We hypothesized that α8-S50P mutant subunits interacted with wild-typeα3 or α8, or with both subunits to affect fiber cell formation. We found that the combination of mutant α8-S50P and wild-type α8 subunits specifically inhibited the elongation of primary fiber cells, while the combination of α8-S50P and wild-type α3 subunits disrupted the formation of secondary fiber cells. Thus, this work provides the first in vivo evidence that distinct mechanisms, modulated by diverse gap junctions, control the formation of primary and secondary fiber cells during lens development. This explains why and how different connexin mutations lead to a variety of cataracts. The principle of this explanation can also be applied to mutations of other connexin isoforms that cause different diseases in other organs.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3