Evidence of embryonic regulation of maternally derived yolk corticosterone

Author:

Carter A. W.12ORCID,Bowden R. M.1,Paitz R. T.1

Affiliation:

1. School of Biological Sciences, Illinois State University, Normal, IL, USA

2. Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA

Abstract

In recent years, the potential for maternal stress effects to adaptively alter offspring phenotype has received considerable attention. This research has identified offspring traits that are labile in response to maternal stress; however, an understanding of the mechanisms underlying these effects is lagging and is crucial to appreciating the significance of this maternal effect. In the present study, we sought to better understand maternal stress effects by examining the potential for embryonic regulation of corticosterone exposure, determining the phenotypic consequences of elevated corticosterone during development, and characterizing the levels of maternally transferred corticosterone in unmanipulated eggs using Trachemys scripta. By dosing eggs with tritiated corticosterone and tracking the steroid throughout development, we found that most corticosterone is metabolized, and less than 1% of the corticosterone dose reaches the embryo as free corticosterone. We also found that exogenous dosing of corticosterone, in concentrations sufficient to overwhelm embryonic metabolism, reduces embryonic survival and negatively impacts hatchlings traits important to fitness. Lastly, we demonstrate that concentrations of maternal corticosterone in the yolks of unmanipulated eggs are low and are significantly lower than the doses of corticosterone required to elicit phenotypic effects in hatchlings. Taken together, these results provide evidence that both the embryo and the female may minimize corticosterone accumulation in the embryo to avoid reductions in embryonic survival and negative impacts on offspring phenotype and fitness.

Funder

National Science Foundation Graduate Research Fellowship

National Institutes of Health

Beta Lambda Chapter of Phi Sigma

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3