Comparison of functional and anatomical estimations of visual acuity in two species of coral reef fish

Author:

Parker Amira N.1ORCID,Fritsches Kerstin A.1,Newport Cait12,Wallis Guy3,Siebeck Ulrike E.1

Affiliation:

1. Laboratory for Visual Neuroethology, School of Biomedical Sciences, University of Queensland, Brisbane, Australia

2. Department of Zoology, University of Oxford, Oxford, England

3. Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, University of Queensland, Australia

Abstract

The high contrast, complex patterns typical of many reef fish serve several purposes, including providing disruptive camouflage and a basis for vision-based communication. In trying to understand the role of a specific pattern it is important to first assess the extent to which an observer can resolve the pattern, itself determined, at least in part, by the observer’s visual acuity. In this study, we study the visual acuity of two species of reef fish using both anatomical and behavioural estimates. The two species in question share a common habitat but are members of different trophic levels (predator vs. herbivore/omnivore) and perform different visual tasks. On the basis of the anatomical study we estimated visual acuity to lie between 4.1 – 4.6 cycles per degree (cpd) for Pomacentrus amboinensis and 3.2 – 3.6 cpd for Pseudochromis fuscus. Behavioural acuity estimates were considerably lower, ranging between 1.29 and 1.36 cpd for Pomacentrus amboinensis and 1.61 and 1.71 cpd for Pseudochromis fuscus. Our results show that two species from the same habitat have only moderately divergent visual capabilities, despite differences in their general life histories. The difference between anatomical and behavioural estimates is an important finding as the majority of our current knowledge on the resolution capabilities of reef fish comes from anatomical measurements. Our findings suggest that anatomical estimates may represent the highest potential acuity of fish but are not indicative of actual performance, and that there is unlikely to be a simple scaling factor to link the two measures across all fish species.

Funder

Australian Research Council

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3