Bridging the gap between basic and applied biology: towards preclinical translation

Author:

Cagan Ross L.1,Justice Monica J.2,Tidmarsh George F.3

Affiliation:

1. Department of Developmental and Regenerative Biology and Graduate School of Biomedical Sciences, Annenberg Building Floor 25 Room 40A, 1468 Madison Avenue, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA

2. Departments of Molecular and Human Genetics and Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA

3. La Jolla Pharmaceutical Company, 459 Forest Avenue, Palo Alto, CA 9430, USA

Abstract

Summary To better translate basic research findings into the clinic, we are moving away from the traditional one-gene–one-phenotype model towards the discovery of complex mechanisms. In this Editorial, the new Editor-in-Chief and Senior Editors of Disease Models & Mechanisms (DMM) discuss the role that the journal will play in this transition. DMM will continue to provide a platform for studies that bridge basic and applied science, and, by demanding the rigorous assessment of animal models of disease, will help drive the establishment of robust standards of preclinical testing for drug development.

Publisher

The Company of Biologists

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology and Microbiology (miscellaneous),Medicine (miscellaneous),Neuroscience (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prebiotic properties of jiaogulan in the context of gut microbiome;Food Science & Nutrition;2022-01-22

2. Impact Factor Wars;European Journal of Psychological Assessment;2021-09

3. Do medicine and cell biology talk to each other? A study of vocabulary similarities between fields;Brazilian Journal of Medical and Biological Research;2021

4. DMM community consultation: help us plan for the next 10 years;Disease Models & Mechanisms;2018-10-01

5. Disease Models & Mechanisms in 2016: a publisher's brief perspective;Disease Models & Mechanisms;2016-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3