New insights into extracellular matrix assembly and reorganization from dynamic imaging of extracellular matrix proteins in living osteoblasts

Author:

Sivakumar Pitchumani1,Czirok Andras2,Rongish Brenda J.2,Divakara Vivek P.13,Wang Yu-Ping3,Dallas Sarah L.1

Affiliation:

1. Department of Oral Biology, UMKC School of Dentistry, 650 E 25th Street, Kansas City, MO 64108, USA

2. Department of Anatomy and Cell Biology, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA

3. School of Computing and Engineering, UMKC, 5100 Rockhill Road, Kansas City, MO 64 USA

Abstract

The extracellular matrix (ECM) has been traditionally viewed as a static scaffold that supports cells and tissues. However, recent dynamic imaging studies suggest that ECM components are highly elastic and undergo continual movement and deformation. Latent transforming growth factor beta (TGFβ) binding protein-1 (LTBP1) is an ECM glycoprotein that binds latent TGFβ and regulates its availability and activity. LTBP1 initially co-distributes with fibronectin in the extracellular matrix of osteoblasts, and depends on fibronectin for its assembly. To gain further insights into the mechanisms of assembly of LTBP1 and its spatial and temporal interactions with fibronectin, we have performed dual fluorescence time-lapse imaging of these two proteins in living osteoblasts using fluorescent probes. Time-lapse movies showed surprisingly large fibril displacements associated with cellular movement as well as occasional breaking of LTBP1 or fibronectin-containing fibrils. Individual fibrils stretched to as much as 3.5 times or contracted to as much as one fourth of their original length. Motile cells appeared to actively mediate extracellular matrix assembly by adding `globules' or `packets' of matrix material onto existing fibrils. They also actively reorganized the extracellular matrix by shunting matrix material from one location to another and exchanging fibrillar material between fibrils. This cell-mediated matrix reorganization was primarily associated with the assembly and remodeling of the initial (early) matrix, whereas mature, established ECM was more stable. Displacement vector mapping showed that different matrix fibrillar networks within the same cultures can show different dynamic motion in response to cell movement and showed that the motion of fibrils was correlated with cell motion. These data suggest novel cell-mediated mechanisms for assembly and reorganization of the extracellular matrix and highlight a role for cell motility in the assembly process.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3