XenopusId3 is required downstream of Myc for the formation of multipotent neural crest progenitor cells

Author:

Light William1,Vernon Ann E.1,Lasorella Anna2,Iavarone Antonio2,LaBonne Carole1

Affiliation:

1. Department of Biochemistry, Molecular Biology and Cell Biology; and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, USA

2. Department of Neurology and Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA

Abstract

Neural crest cells, a population of proliferative, migratory,tissue-invasive stem cells, are a defining feature of vertebrate embryos. These cells arise at the neural plate border during a time in development when precursors of the central nervous system and the epidermis are responding to the extracellular signals that will ultimately dictate their fates. Neural crest progenitors, by contrast, must be maintained in a multipotent state until after neural tube closure. Although the molecular mechanisms governing this process have yet to be fully elucidated, recent work has suggested that Myc functions to prevent premature cell fate decisions in neural crest forming regions of the early ectoderm. Here, we show that the small HLH protein Id3 is a Myc target that plays an essential role in the formation and maintenance of neural crest stem cells. A morpholino-mediated `knockdown' of Id3 protein results in embryos that lack neural crest. Moreover, forced expression of Id3 maintains the expression of markers of the neural crest progenitor state beyond the time when they would normally be downregulated and blocks the differentiation of neural crest derivatives. These results shed new light on the mechanisms governing the formation and maintenance of a developmentally and clinically important cell population.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3