Distribution and functions of kinectin isoforms

Author:

Santama Niovi1,Er Connie P. N.2,Ong Lee-Lee2,Yu Hanry34

Affiliation:

1. University of Cyprus and Cyprus Institute of Neurology and Genetics, PO Box 20537, 1678 Nicosia, Cyprus

2. National University Medical Institutes and Faculty of Medicine, National University of Singapore, Block MD11, #04-01A, Clinical Research Center, 10 Medical Drive, Singapore 117597, Rep. of Singapore

3. Department of Physiology, Faculty of Medicine, National University of Singapore, Block MD11, #04-01A, Clinical Research Center, 10 Medical Drive, Singapore 117597, Rep. of Singapore

4. Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research, 31 Biopolis Way, The Nanos, #04-01, Singapore 117586, Rep. of Singapore

Abstract

Kinectin is an integral transmembrane protein on the endoplasmic reticulum, binding to kinesin, interacting with Rho GTPase and anchoring the translation elongation factor-1 complex. There has been debate on the specific role(s) of kinectin in different species and cell types. Here we identified 15 novel kinectin isoforms in the mouse nervous system, constituting a family of alternatively spliced carboxyl-terminal variants. Isoform expression is subject to cell type- and developmental stage-specific regulation. We raised specific antibodies to the kinectin variants to characterise their differential intracellular localisation and discovered that certain kinectin isoforms are found in axons where kinectin was previously believed to be absent. We also demonstrated in vivo by overexpression and RNA interference assay that kinectin is selectively involved in the transport of specific types of organelles. A 160 kDa kinectin species is mainly concentrated in the endoplasmic reticulum, anchored via its transmembrane domain and is essential for endoplasmic reticulum membrane extension. A 120 kDa kinectin species is specifically associated with mitochondria, and its interaction with kinesin was found to influence mitochondrial dynamics. These findings contribute to a more unified view of kinectin function. They suggest that different cellular processes use specific kinectin isoforms to mediate intracellular motility and targeting by transient interaction with different motor proteins or other binding partners.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3