Kinome profiling of non-canonical TRAIL signaling reveals RIP1-Src-STAT3 dependent invasion in resistant non-small cell lung cancer cells

Author:

Azijli Kaamar,Yuvaraj Saravanan,Peppelenbosch Maikel P.,Würdinger Thomas,Dekker Henk,Joore Jos,van Dijk Evert,Quax Wim J.,Peters Godefridus J.,de Jong Steven,Kruyt Frank A. E.

Abstract

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) triggers apoptosis selectively in tumor cells through interaction with TRAIL-R1/DR4 or TRAIL-R2/DR5 and is considered a promising avenue in cancer treatment. TRAIL resistance, however, is frequently encountered and hampers anti-cancer activity. Here we show that whereas H460 non-small cell lung cancer (NSCLC) cells display canonical TRAIL-dependent apoptosis, A549 and SW1573 NSCLC cells are TRAIL resistant and display pro-tumorigenic activity, in particular invasion, following TRAIL treatment. We exploit this situation to contrast TRAIL effects on the kinome of apoptosis-sensitive cells to that of NSCLC cells in which non-canonical effects predominate, employing peptide arrays displaying 1,024 different kinase pseudosubstrates more or less comprehensively covering the human kinome. We observed that failure of a therapeutic response to TRAIL coincides with the activation of a non-canonical TRAIL-induced signaling pathway constituting amongst others of the activation of Src, STAT3, FAK, ERK and Akt. The use of TRAIL-R1 or TRAIL-R2 selective TRAIL variants subsequently showed that this non-canonical migration and invasion is mediated via TRAIL-R2. Short-hairpin-mediated silencing of RIP1 kinase prevented TRAIL-induced Src and STAT3 phosphorylation and reduced TRAIL-induced migration and invasion of A549 cells. Inhibition of Src or STAT3 by shRNA or chemical inhibitors including dasatinib and 5,15-DPP blocked TRAIL-induced invasion. FAK, AKT and ERK were activated in a RIP1-independent way and inhibition of AKT sensitized A549 cells for TRAIL-induced apoptosis. We thus identified RIP1-dependent and –independent non-canonical TRAIL kinase cascades in which Src and AKT are instrumental and could be exploited as co-targets in TRAIL therapy for NSCLC.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3