Independent functions and mechanisms for homeobox gene Barx1 in patterning mouse stomach and spleen

Author:

Kim Byeong-Moo12,Miletich Isabelle3,Mao Junhao4,McMahon Andrew P.4,Sharpe Paul A.3,Shivdasani Ramesh A.125

Affiliation:

1. Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115,USA.

2. Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.

3. Department of Craniofacial Development, Dental Institute, Kings College,London SE1 9RT, UK.

4. Department of Molecular and Cellular Biology, Harvard University, Cambridge,MA 02138, USA.

5. Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115,USA.

Abstract

Homeobox genes convey positional information in embryos and their role in patterning the mammalian gut is a topic of considerable interest. Barx1 is expressed selectively in fetal stomach mesenchyme and directs differentiation of overlying endoderm. Recombinant tissue cultures and study of young mouse embryos previously suggested that Barx1 controls expression of secreted Wnt antagonists, which suppress endodermal Wnt signaling, to enable stomach epithelial differentiation. We overcame mid-gestational lethality of Barx1-/- mouse embryos and report here the spectrum of anomalies in a distinctive and unprecedented model of gastrointestinal homeotic transformation. Using various mouse models, we confirm the importance of attenuated Wnt signaling in stomach development and the role of Barx1 in suppressing endodermal Wnt activity. Absence of Barx1 also results in fully penetrant defects in positioning and expansion of the spleen, an organ that originates within the mesothelial lining of the stomach. Barx1 is absent from the spleen primordium but highly expressed in the mesogastrium, indicating an indirect effect on spleen development. However,our results argue against a role for Wnt antagonism in genesis of the spleen. Mouse spleen development relies on several homeodomain transcriptional regulators that are expressed in the spleen primordium. Loss of Barx1 does not affect expression of any of these genes but notably reduces expression of Wt1,a transcription factor implicated in spleen morphogenesis and expressed in the mesothelium. These observations place Barx1 proximally within a Wt1 pathway of spleen development and reveal how a homeotic regulator employs different molecular mechanisms to mold neighboring organs.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3