From heterogeneous morphogenetic fields to homogeneous regions as a step towards understanding complex tissue dynamics

Author:

Yamashita Satoshi1ORCID,Guirao Boris2,Graner François1

Affiliation:

1. Laboratoire Matière et Systèmes Complexes (CNRS UMR7057), Université de Paris-Diderot, F-75205 Paris Cedex 13, France

2. Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France

Abstract

ABSTRACT Within developing tissues, cell proliferation, cell motility and other cell behaviors vary spatially, and this variability gives a complexity to the morphogenesis. Recently, novel formalisms have been developed to quantify tissue deformation and underlying cellular processes. A major challenge for the study of morphogenesis now is to objectively define tissue sub-regions exhibiting different dynamics. Here, we propose a method to automatically divide a tissue into regions where the local deformation rate is homogeneous. This was achieved by several steps including image segmentation, clustering and region boundary smoothing. We illustrate the use of the pipeline using a large dataset obtained during the metamorphosis of the Drosophila pupal notum. We also adapt it to determine regions in which the time evolution of the local deformation rate is homogeneous. Finally, we generalize its use to find homogeneous regions for cellular processes such as cell division, cell rearrangement, or cell size and shape changes. We also illustrate it on wing blade morphogenesis. This pipeline will contribute substantially to the analysis of complex tissue shaping, and the biochemical and biomechanical regulations driving tissue morphogenesis.

Funder

Uehara Memorial Foundation

Japan Society for the Promotion of Science

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3