Axonal Adaptations to Osmotic and Ionic Stress in an Invertebrate Osmoconformer (Mercierella Enigmatica Fauvel): III. Adaptations to Hyposmotic Dilution

Author:

BENSON J. A.1,TREHERNE J. E.2

Affiliation:

1. Department of Zoology, University of Cambridge; Laboratory of Sensory Sciences, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, Hawaii 96822

2. Department of Zoology, University of Cambridge

Abstract

The giant axons of this extreme osmoconformer were adapted, in vitro, to progressive hyposmotic dilution of the bathing medium (from 1024 m-Osmol to concentrations as low as 76.8 m-Osmol). Hyposmotic adaptation is associated with reductions in the intracellular concentrations of both sodium and potassium ions. These reductions do not appear to result from appreciable axonal swelling. The different electrical responses to isosmotic and hyposmotic dilution suggest that reduction in [Na+]1 results from ouabain-dependent sodium extrusion, in response to ionic dilution, and that reduction in [K+]1 is induced by a combination of ionic and osmotic dilution. The reduced level of intracellular potassium achieved during hyposmotic adaptation represents a balance between the necessity to contribute to osmotic equilibration and to maintain a potassium gradient across the axon membrane sufficient to produce appreciable axonal hyperpolarization during dilution of the bathing medium. This hyperpolarization tends to maintain the amplitude of the action potential, by compensating for reduction in overshoot (with decline in ENa), and by reducing sodium inactivation. This, together with the reduction in [Na+]1, enables overshooting action potentials of relatively large amplitude and rapid rise time to be maintained during more than tenfold dilution of the ionic and osmotic concentration of the bathing medium.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Compensation mechanism for membrane potential against hypoosmotic stress in the Onchidium neuron;Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology;2022-12

2. Osmoregulation and Excretion;Comprehensive Physiology;2014-03-19

3. Variations in Salinity, Osmolarity, and Water Availability: Vertebrates and Invertebrates;Comprehensive Physiology;1997-12

4. Volume Regulation in Cells of Euryhaline Invertebrates;Cell Volume Control: Fundamental and Comparative Aspects in Animal Cells;1987

5. Neuronal Adaptations to Osmotic Stress;Proceedings in Life Sciences;1985

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3