Acid-Base Regulation and Ion Transfers in the Carp (Cyprinus Carpio) During and After Exposure to Environmental Hypercapnia

Author:

CLAIBORNE J. B.1,HEISLER NORBERT2

Affiliation:

1. Department of Biology, Georgia Southern College Statesboro, Georgia 30460 U.S.A.

2. Abteilung Physiologie, Max-Planck-Institut für experimentelle Medizin D-3400 Göttingen, F.R.G.

Abstract

Acid-base balance and ion transfers were studied in the carp, Cyprinus carpio L., during and after 48 h of exposure to environmental hypercapnia (PCOCO27.5 Torr). Plasma pH, PCOCO2, [HCO3−], and net transfers of HCO3−, NH4+, Cl− and Na+ between the fish and the environmental water were measured periodically throughout the experiment. Over the first 8 h of hypercapnia, plasma PCOCO2 increased by 7.6 Torr with a concurrent decrease in plasma pH of 0.28 units. Plasma [HCO3−] was slowly elevated from about 14 to 22 mM after 48 h, at which point 50% of the pH depression expected at constant bicarbonate concentration had been compensated. The net amount of H+ transferred to the water was 3.3 mmol kg−1 fish, representing a 115% increase in the rate of cumulative H+ efflux, and inducing an elevation of both intracellular and extracellular [HCO3−]. Cl− transfer was reversed from a net uptake to a net efflux, while net Na+ influx was increased slightly. Following hypercapnia, plasma pH returned to control values within 1 h, while the plasma [HCO3−], which was elevated during hypercapnia, fell continuously to reattain pre-hypercapnic control values after 20 h. The [HCO3−] decrease was due to the net gain of H+ ions from the water during this period. Cl− transfer returned to a net uptake, while the original Na+ influx was reversed to a net loss. Acid-base regulatory responses in the carp are qualitatively similar to those observed in other fish, though the time required for compensatory pH adjustment is longer. It is concluded that alterations in the rates of Cl−/HCO3− and Na+/H+ exchanges during hypercapnia and Na+/H+ exchange following hypercapnia, play a significant role in the compensation of respiratory acid-base disturbances in these animals.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3