Author:
Metcalfe J. D.,Butler P. J.
Abstract
daily activity cycles, together with changes in activity and ventilation frequency in response to hypoxia (PO2 about 8 kPa), have been measured in unrestrained, unoperated dogfish. Continuous recording of activity over 48 h reveals that dogfish are essentially nocturnal, being three to four times more active at night than during the day. In relatively inactive, diurnal dogfish, rapid reduction of environmental PO2 does not cause any significant increase in swimming activity, whereas prolonged hypoxia actually appears to suppress activity. In more active, nocturnal dogfish, rapid reduction of environmental PO2 causes an immediate reduction in activity which remains suppressed throughout the hypoxic period. It is concluded therefore that increases in circulating catecholamines in response to hypoxia are the result of hypoxia alone, rather than of any increase in locomotory activity. In resting diurnal dogfish, ventilation frequency is lower than has previously been reported for this species and, contrary to previous reports, increases markedly by 49% in response to hypoxia. It appears that in previous studies on confined dogfish, respiratory frequency, and probably ventilation volume, may have been elevated to near maximum levels even in ‘resting’ normoxic fish. This may have profound effects on so-called resting values for oxygen transfer in this species.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献