vps25 mosaics display non-autonomous cell survival and overgrowth, and autonomous apoptosis

Author:

Herz Hans-Martin1,Chen Zhihong2,Scherr Heather2,Lackey Melinda2,Bolduc Clare2,Bergmann Andreas2

Affiliation:

1. University of Heidelberg/ZMBH, Im Neuenheimer Feld 282, 69120 Heidelberg,Germany.

2. Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard - Unit 1000, Houston, TX 77030, USA.

Abstract

Appropriate cell-cell signaling is crucial for proper tissue homeostasis. Protein sorting of cell surface receptors at the early endosome is important for both the delivery of the signal and the inactivation of the receptor, and its alteration can cause malignancies including cancer. In a genetic screen for suppressors of the pro-apoptotic gene hid in Drosophila,we identified two alleles of vps25, a component of the ESCRT machinery required for protein sorting at the early endosome. Paradoxically,although vps25 mosaics were identified as suppressors of hid-induced apoptosis, vps25 mutant cells die. However, we provide evidence that a non-autonomous increase of Diap1 protein levels, an inhibitor of apoptosis, accounts for the suppression of hid. Furthermore, before they die, vps25 mutant clones trigger non-autonomous proliferation through a failure to downregulate Notch signaling, which activates the mitogenic JAK/STAT pathway. Hid and JNK contribute to apoptosis of vps25 mutant cells. Inhibition of cell death in vps25 clones causes dramatic overgrowth phenotypes. In addition, Hippo signaling is increased in vps25 clones, and hippo mutants block apoptosis in vps25 clones. In summary,the phenotypic analysis of vps25 mutants highlights the importance of receptor downregulation by endosomal protein sorting for appropriate tissue homeostasis, and may serve as a model for human cancer.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 139 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3